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A generalization of the Iorio-O’Carroll theorem to the case of 
lattice Hamiltonians 

A M Melnikovt and A I Mogilnert 
t Department of Mathematics, University of California at [wine, CA 92717, USA 
i Department of Physics, University of Manitoba, Winnipeg, Manitoba, Canada R3TZN2 

Received 7 November 1990 

Abstract. It is shown that a wide class of lattice Hamiltonians in solid state physics 
describing the System of N three-dimensional weakly interacting quasiparticles is unitarily 
equivalent to the one of corresponding Hamiltonians of the system of non-interacting 
quasiparticles. 

Let us consider the operator 

N 
H o =  1 Ai 

; = I  

acting in 4(Z”j, where Z3 is a three-dimensional cubic lattice and A, is the generalized 
lattice Laplacian acting via 

(2) 

where r, EZ’, i =  1 . . . N and J r ( r )  are exponentially decreasing functions: IJ,(r)l< 
C ,  exp(-C,lrlj. C ,  , C, here and henceforth are some positive constants. Then let 

( A , ~ j ( r ,  . . .  r N ) = ~ J , ( r j ( P ( r  , . . . r , -  , (r ,+r)*,+ ,... rNj 
2’ 

V =  y,(rj-5)+ x W v l ( r ~ - r i , r i - r ~ j  (3) 
i < j  i<j<l 

where each of the functions V,re!,,,,(Z’)n/m2(Z3) for some fixed m , ,  m2 such that 
l < m , < $ < m , < m ,  and each of the  functions W,l~/,,;(Z6jn/,,,i(Z6j, where l < m l <  
; < m i  < CO, and their Fourier transforms V,, and W.;, are the smooth functions on the 
torus. Finally, let us introduce the operator 

H(Aj=H,+AV (4) 

specified by some A E R. 
After Fourier transformation the operator H(A) becomes the operator G(A) acting 

in L,( T”), where T’ is a three-dimensional torus. In  this so-called momentum 
representation w e  have the following expressions: 
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= J rv 6’,,(k! - k, - kl + kj, ki - k, - kj + k;)S(k, + k,+ k, - ki - kj - kl) 

x$(k,  . . .  kf-,klkj+, . . .  k,-,k:k,, ,... k,_,k;k,,, . . .  k,)dk:.dk;.dk; (9) 

t , ( k ) = x  K,(r)exp(i(k, r)) (10) 

q , d k , k d = X  W,j,exp[i((k,,r,)+(k2,r,))l ( 1 1 )  

z’ 

2- 

where ( .  , .) is a scalar product, kj E T’, i = 1 , .  . . , N. One can see from (8) that E(k) 
is the analytic function in some complex neighbourhood of a torus. 

Evidently, the operator H ( A )  is bounded and self-adjoint. 
The most natural source of such operators is solid state theory [l]. The operator 

( 1 )  is the Hamiltonian describing, in the coordinate representation, the system of N 
quasiparticles (magnons, phonons, electrons, etc.) on a crystal lattice. A,  is the transfer 
operator describing hopping of the ith quasi-particle from site to site. V;i( .) is the pair 
potential of interaction and Wji l ( .  , .) is the three-particle potential. In a number of 
such systems quasi-particles interact weakly, which means that the value of IAl is 
sufficiently small. 

The analogy to the N-particle Schrodinger operator is evident, and the Iorio- 
OCarroll theorem on the unitary equivalence of operators describing free and interact- 
ing dynamics of weakly coupled three-dimensional systems for such Schrodinger 
operators [2,3]. Here we will obtain the analogous result for lattice Hamiltonians. 
This result is important in physical applications because the spectrum of the free 
Hamiltonian Ho is well known from formulae ( 5 ) ,  (6) and (81, and it is absolutely 
continuous. 

Theorem. For all sufficiently small lhl and for the functions q ( k )  of general position 
the operator H ( A )  is unitarily equivalent to the operator H,. 

Proof: The scheme of the proof is the same as in the continuous case in [3]. It follows 
from Kato’s smoothness theorem [3] that our theorem is valid if the following conditions 
hold: 

sup ( 1  I V ‘ , l ’ ’ 2 ( H , , - ~ ) - ’ l  V~~l’’~l/ <CC 
11R 

( i )  

(ii) sup ~ ~ ~ W , i , l ” 2 ( H o - ~ ) ~ ’ I  W,,d’’’Il <a 

(iii) sup IIIV,iI”2(H,~-~)~’IW,“~I”211 <m 

for all i, j, I, n, s, f .  Let us begin with case ( i )  and let I = i, n = j .  

:LR 

:em 
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( a )  Let 

be the kernel of the operator /x . ,”2 in the momentum representation, where 9 =  
$ ( k j - k j - k : + k j ) .  Then the kernel of the operator T ~ ~ ~ , ~ ’ ~ ’ ( ~ ~ - z ) ~ ’ ~ ~ ~ ~ ’ ~ ~  has the 
form 

(12) T ( k ,  k’, Z) I ( K ,  z’, 9, q’ )S (K  - K’)  n 6 ( k ,  - k ; )  
I + ; . ,  

where k = { k l  . . . k N } ;  K = k, + k, ; 

I( K, z’, 9, 9’) = 1 U?( q -x)( eK (x)  - z ’ ) - ’ u g (  x - 9’) d x  

z ’ = z -  1 & ( k , )  e K ( x )  = E ; (  K / 2 + x )  + el( K / 2 - x )  

The function J(z‘) (we have omitted the variables K, 9,9’) can be represented in 
Gelfand-Lereh form [4]: 

T’ 
(13) 

I+;.; 

t m  

J ( z ’ )  = dC(1- z ’ ) - ‘ I ( [ )  (14) 
-m 

I([) = I og(4 -x)uJx- 9’) W J )  (15) 
-,(XI=< 

where formally d w ( 0  = dw/d{ (dw =ds(x)IVeK(x)I-’, ds(x) is the Euclidean element 
of the area of the surface given by eK (x)  = 5 ) .  

Let us show that I ( [ )  is a bounded function of the Holder type [3]. It is true if 
the function I , ( { )  is also of the Holder type, where 

I Y C )  = I 1 d w K )  (16) 
r x ( x l = S  

because a locally smooth function is equivalent to a constant, 
Let us consider the function 

tm 

u ( t ) =  exp(ig)l’(<) dt .  (17) L 
I? 

It is easy to check that 

u ( t )  = exp(ita,(x)) dx. (18) 

The asymptotics of the integral (18) appearing in a stable way in the general position 
are cited in [4]: 

O < p < 7  
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and the corresponding singularities of the function I ' ( A ) ,  and respectively of I ( A ) ,  are 
the following: 

I ( * ) = [  5"". ::::, (19) 

Consequently, the function I ( A )  is of the Holder type, and its Hilbert transform is 
bounded. It is seen from (12) that the operator T can be decomposed by the direct 
integral decomposition [3]. Because of operator, its norm is uniformly bounded for 
all zglw (see [3]). 

A M Melnikou and A I Mogilner 

( b )  Now let / = j ,  n Z i  and ll',l''*=g,j. If Im(z)>O then 

g..(H,-z)-'g. I" = -i Iom d t  e'"gV(e"'HO)g., 

l l g j i ( r j - r , ) e - ~ " A , + A , ' g , ~ ( r j - r ~ ) p ( r ,  . . .  r " ) l l = l l g ~ j ( r j - r j ) ( e - ' ~ ~ , ) g j ~ ( ~ - r ~ ) p ' ( r ,  ... rN)l l  

where q ' =  (e-'IA,)p and llp'll= IIqll. Here we have used the unitarity of the operators 
, i = 1,. . . , N, and the fact that such an operator commutes wih the operator of e-;A, 

multiplication by the function of the variables which do  not contain ri. 
Let us now calculate the partial norm 

I I g V ( r , - r i ) ( e - ; ' A , ) g , ~ ( r i - r " ) q ' ( r , .  . . rN)llr2,,,' 

Lemma. ~ ~ e ~ " A ~ ~ ~ l , ~ c  (Ct)-"* (where ~ ~ . ~ ~ , . m :  /,(Z3)+ / , (a3))  

Proof: The operator acts as a convolution with the function 

G(r)=J exp(-ife(k)+(r, k ) )dk .  (20) 
T' 

But IG(r)I s (Ct)-3'2, because the second derivatives of the function E'(k) = 
E(k) - (k, r/ 1 )  coincide with those of the function e(k), so in general the function ~ ( k )  

0 can possess Morse critical points only. After this the proof is evident. 

Evidently, q ' ( r j )e  12(Z3); Vv(r;-rj)€l,,(Z3) uniformlyby r,; yn(rj-rH)el,,(C') uni- 
formlyby r,. It follows from Holder inequalities that gjnq'e /.<(Z3), where s = 2 p / ( p  + l ) ,  
~~gj , ,q '~~7,r ,  s 11 V,, ~ ~ ' ' 2 ~ ~ q ' ~ ~ 2 , , , .  But from Riesz-Thorin interpolation theorem [ 5 ]  one can 
conclude from the inequality ~ ~ e ~ " A ~ ~ ~ , , m S  (Cf) -3 'z  and from the equality ~ ~ e ~ i ' A ~ ~ ~ 2 , 2 =  1 
that lle-"At ll,,\,s (Cf)""~", where s- '+s ' - '  = 1. Consequently, eC'",(ginp') € k ( Z 3 ) ,  
and 

l\eA''A,(g,np')ll (. < (Ct)-"*' I1 v, I1 ;"I1 9'Ih. 

~~g,~(e-~'~')g~"p'II*,,, ( ct)-"'II v,, II ? 2 1 1  v,. II ?211v II?.,,. 

~ ~ g , , ( e - ~ ' ~ , ) g i ~ p ' ~ ~ * ~  (Cl)-"*" llVAIp "* /I v. I"1IP IlPlla. 

Again using the Holder inequality one obtains 

(21) 

Integrating (21) by other variables one concludes that 

(22) 
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Rememberingthat V)(r)el,,(Z1)nl,,(Z3) forall i , j a n d  l < p < t < q < m , o n e s e e s f r o m  
(22) (assuming h ( z )  > 0) that 

~ ~ g ~ ( H o - z ) ~ ' g , n / [ ~  d f  e-""!*') min [(cf)-3/z'il k',li:'21/ t$((!/']<m. (U' 3 =p.4 

The proof of case ( b )  is completed. 
( c )  NOW let I #  i, j, n # i, j. The proof of this case is almost the same as that of 

case 3 in the proof of the Iorio-O'Carroll theorem in [3]. Without loss of generality 
let i = 1, j = 2, I = 3, n = 4. Then 

I ( P ,  g12(e-i'H")gld~)I 

934$)l 'P. g12 e = /(ei!w3+A'l 

*)I 'P, gI2 e = ei'(A,+%) 

'PII I l g , >  e-iW+A?l *ll. < / I g , ,  ei'(%+%l 

-C<IHm-&~3-A4) 

- i<(Ho-A,-Aa)  

In the first step we have used the fact that g,, and ( A l + A 4 )  commute, in the second 
stepthatg,,commuteswith(H,-A,-A,),andinthelaststepthatg,,and(H,-~a, A;) 
commute. 

It is known from the corollary to theorem 13.25 of [ 3 ]  that the operator A is 
H-smooth if sup,,, IIA(H-z)-'A*II <CO. So the operator g, is ( A j + A , )  smooth. Thus, 
+a, 

*Il d f  1Ig1, e i ' ( 4 + A J  'PII l l g , >  e-i'%+A>l 

l l ~ 3 ~ l l ~ ~ , + ~ ~ l l l ~ ~ * l l  ca,+n2,11'Pll ll*Il 
see the definition of the norm 11 . I I H  in [3] from which it follows that 

For Im(r) > 0 

and the proof of case (i) is completed. 

of the function E ~ ( x )  we should consider the function 
The proof of case (ii) when i = n, j = s, I = f, is the same as in ( a )  above. Instead 

E K ( x I ,  xJ- &,[?i(K - ~ X , - X , ) ] +  &,[f(K +XI  - x ~ ) I +  &,[f(K + X I  + 2 ~ J 1  
and all estimates are only improved. If i = n, j = s, I # f then the proof is the same as 
in ( a ) .  If i = n, j # s, t, I # s, f then the proof is the same as in (b ) .  Finally, i f  i # n, s, f ,  

j # n, s, 1, I # n, s, f then the proof is the same as in (c ) .  
Analogously, for case (iii) the correspondences are as follows: 

i =  l , j =  n :  ( a )  i = /, j # n, s :  ( b )  i # /, n, s, j # l, n, s: (c),  

This completes the proof. U 
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Finally we will briefly discuss the obtained result. 
(i) There can be no such theorem in one- and two-dimensional cases [l] as well 

as in the continuous case [3]. 
(ii) There are some important examples in solid state physics in  which the degener- 

ation of some critical points of the functions ~ ~ ( k ~  ... k , ) =  :;=, E ( k ) + E ( K  -X;=, k , )  
are not of general position (see [l,  61). Under this it was shown that the theorem is 
not valid. 

(iii) It is interesting to note that, from the proof above, only when the interaction 
is pair-wise is the upper bound for the critical number of particles at which the theorem 
is valid N,zA-"~. However it is known (see [l]) that N,=A-'. The weakness of this 
estimate is connected to the roughness of the norm estimate technique. 

(iv) The extension of the theorem to dimensions higher than three and to cases of 
not only 2- and 3- but also 4-, . . . , N-particle potentials is evident. 

(v) The physically important corollary is that in three-dimensional systems of N 
weakly interacting quasiparticle bound states, resonances and singular spectra do not 
exist, and the Hamiltonian possesses wave operators which are complete. 

(vi) It is easy to prove the theorem for the case when, for the first quasiparticle, 
J , ( r ) =  0. This means that this quasiparticle is motionless and we have the problem of 
an impurity on a crystal lattice weakly interacting with N - 1 quasiparticles. Under 
this condition parts ( a )  and (c) of the proof remain unchanged but in part ( b )  one 
has to use the techniques of part ( c ) .  

Acknowledgments 

We are grateful to R A Minlos and D R Jafaev for useful advice and discussions. This 
work was partially funded under NSERC operatmg grant OGP @++5+36 to P D Loiy. 

References 

[ I ]  Magilner A I 1991 Ad". Souier Math. 3 in press 
iij iaria R ana O'Carroii M i9ii Commun. Marh. Phys. ii 137 
[3] Reed M and Simon B 1978 Anolyris of Operolor.~. Methods of Modern Marhemoricol Physics YOI 4 (New 

[4] Arnold V 1, Varchenko A N and Gusejn-Zadeh S M 1982 The Clariifcnrion of Crirical Points, Caustics 

[5] Reed M and Simn B 1975 Fourier Analysis, Se(f-Adjointners. Merhods of Modern Mathemaricol Physicr 

[6 ]  Mogilner A I 1989 Phys. Metals Merollogr. 67 400 ( i n  Russian) 

York: Academic) 

and Waue Fronts; 1984 Monodromy and Asymptolics of Inregrolr (Moscow: Nauka) (in Russian) 

YOI 2 (New York Academic) 


